

InsulRoof EPS-FR Core Grade SL - Roof Span Table for Housing Application Fixing to 1.5 BMT G450 Steel Framing

Non-Cyclonic

	_		Panel Thickness																
	ULS Design	50 mm			75 mm			100 mm			125 mm			150 mm			200 mm		
	Wind	Max Span (m)		oan (m) Max.		Max Span (m)		Max Span (m)		Max.	Max Span (m)		Max.	Max. Max S ₁		Max.	Max Span (m)		Max.
	Pressure			Cantilever			Cantilever			Cantilever			Cantilever			Cantilever			Cantilever
Wind Class	(kPa)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)
N1	-0.97	4.7	5.5	450	5.6	6.6	900	6.5	7.5	1200	7.3	8.3	1600	7.9	9.1	1800	9.1	9.9	2100
N2	-1.34	4.0	4.4	450	4.7	5.5	900	5.5	6.3	1200	6.1	7.0	1600	6.6	7.6	1800	7.6	8.8	2100
N3	-2.1	3.1	2.7	450	3.5	4.1	900	4.3	4.9	1200	4.8	5.5	1600	5.2	6.0	1800	6.0	6.9	2100
N4	-3.13	2.3	1.8	450	2.6	2.7	900	3.4	3.6	1200	3.9	4.4	1600	4.2	4.8	1800	4.8	4.9	2100
N5	-4.60	1.5	-	450	1.9	1.8	850	2.5	2.4	1150	3	3.1	1400	3.5	3.3	1450	4	3.3	1450

Cyclonic

Cyclottic																			
										Panel	Thickness								
	ULS Design	50 mm			75 mm			100 mm			125 mm			150 mm					
	Wind	Max Span (m)		Max.	Max S	Max Span (m)		Max Span (m)		Max.									
	Pressure			Cantilever			Cantilever			Cantilever			Cantilever			Cantilever			Cantilever
Wind Class	(kPa)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)	Single Span	Multi-Span	(mm)
C1	-2.78	2.6	2.0	450	3.2	3.1	900	3.7	4.1	1200	4.1	4.7	1600	4.5	5.2	1800	5.2	5.9	2100
C2	-4.13	1.7	-	450	2.6	2.0	900	3.0	2.7	1200	3.3	3.4	1600	3.7	4.1	1800	4.2	4.8	2100
C3	-6.08	-	-	-	1.7	-	850	2.3	1.8	1150	2.7	2.3	1200	3.0	2.8	1550	3.4	3.6	1850
C4	-8.21	-	-	-	-	-	-	1.7	-	850	2.1	1.7	900	2.5	2	1150	2.9	2.6	1350

Notes:

- 1. Wind speeds and coefficients based on AS 4055 Wind Loads for Housing.
- 2. Roof pressure coefficients based on the following worst case assumptions:
- a) External Pressure Ratio of building height to least horizontal dimension on plan, h/d < 0.5. $C_{pe} = -0.9$
- b) Internal Pressure Non-Cyclonic Building has no dominate openings & more than one permeable wall or is effectively sealed. $C_{pi} = +0.2$
 - Cyclonic Based on dominate opening pressure. $C_{pi} = +0.7$
- c) Local Pressure Least Horizontal Dimension on Plan < 20m (a = 4m). $K_1 = 1.5$
- d) Combination Factor $K_c = 0.9$
- e) Non-cyclonic C_{fig} = -1.4, Cyclonic C_{fig} = -1.85
- 3. Serviceability deflection limit of span/150 has been allowed for.
- 4. Self weight of the panel has been allowed for, plus an allowance of up to 25kg/m² (0.25kPa dead load) for light duty fittings (lights, etc.).
- 5. Non-trafficable maintenance access (concentrated load) of 140kg on any span has been allowed for.
- 6. Distributed live load of 0.25kPa (as per AS/NZS 1170.1) has been allowed for.
- 7. Fixings to be:
 - 7x Buildex 14-14 Climaseal® Tek Screws per panel into 1.5 BMT G450 steel at minimum every second corrugation for non-cyclonic regions
 - 13x Buildex 14-14 Climaseal® Tek Screws with cyclonic washers per panel into 1.5 BMT G450 steel at every corrugation for cyclonic regions
- 8. Overhangs:
 - a) Max. Overhang min. of value stated or 40% of backspan.
- b) Overhangs include an allowance for a 1.1kN concentrated load based on strength limit state as a separate loadcase.
- 9. Span tables have been developed by Bligh Tanner Consulting Engineers by interpretation of physical testing conducted & reported by BRANZ.